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ABSTRACT
Purpose Triphenyl phosphonium cations (TPPs) are delocalized
lipophilic cations that accumulate in the mitochondria of cells. We
have explore the effect of increasing the number of TPPs on
delivery of a cell-impermeable pro-apoptotic peptide to intact cells.
Methods The pro-apoptotic peptide D-(KLAKLAK)2 (KLA)
was extended with 0–3 L-Lysines modified at their ε-amine
with TPP. Peptides were studied in HeLa cells to determine
their cytotoxic activity and cellular uptake.
Results In HeLa cells, the increased cytotoxicity correlates
with the number of TPPs; the peptide with 3 TPP molecules
(3-KLA) exerts the highest cytotoxic activity. This FITC-labeled
peptide is found to accumulate in intact HeLa cells, whereas
peptides with 0–2 TPPs are not detected at the same peptide
concentration. Mitochondria-dependent apoptosis of HeLa
cells in the presence of 3-KLA was followed by propidium
iodide, Annexin-V and DiOC fluorescence by FACS.
Conclusion A facile synthetic methodology has been presented
for the delivery of a biologically active peptide into mitochondria
of intact cells by attaching multiple TPP moieties to the peptide.
This approach was shown to dramatically increase biological
activity of the peptide as a pro-apoptotic agent.
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ABBREVIATIONS
Ahx 6-aminohexanoicacid
Alloc allyloxycarbonyl
FITC fluorescein isothiocyanate
PI propidium iodide
TPP triphenylphosphonium

INTRODUCTION

Mitochondria are unique cellular organelles that are
surrounded by two distinct membranes and function as
the main powerhouse of the cell. In recent years, several
drug delivery systems have been developed for targeting
molecules of different size and charge site specifically to
either isolated mitochondria (1–3) or to mitochondria of
intact cells (4–7). These include liposomes (8–14), metal
complexes (15,16), positively charged guanidines (17–20) as
well as synthetically designed mitochondria-targeting pep-
tides (21–28) and natural mitochondrial leader peptides
(3,29–32). As part of its physiological role in energy
production, the mitochondrion generates relatively high
levels of reactive oxygen species (ROS), an outcome that
has been correlated to a variety of human pathologies.
Thus, a variety of antioxidants have been targeted to
mitochondria as means of alleviating the oxidative stress
localized at these organelles (1,33–38).

Perhaps one of the most studied systems is based on the
triphenylphosphonium (TPP) cation molecule. TPP, being
a delocalized lipophilic cation (DLC), has the propensity of
accumulating in mitochondria, a process primarily driven
by the highly negative mitochondrial potential (ψmit) that
succumbs to a negative charge in the matrix (37). This
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negative gradient in the mitochondrial membrane potential
is even further manifested in tumor cells (39,40).

In a recent report, a TPPmolecule conjugated to a nitroxide
was successfully utilized to minimize γ-irradiation-induced
apoptosis in brain tumor cells (41), highlighting the potential
of such TPP-antioxidants in reducing toxicity in post radiation
therapy. Furthermore, TPP molecules, in particular those with
long alkyl chains, were found to accumulate in mitochondria
of rats within a few minutes after i.v. administration (42).

Several studies have also shown that TPP molecules linked
to NO-releasing molecules are effective in protecting mito-
chondria in hypoxic (43) or apoptotic conditions (44). As
such, TPP molecules have been shown to be well tolerated in
mice (45); they offer a relatively simple approach for
targeting a variety of molecules to mitochondria.

Nonetheless, TPP is limited in terms of its cargo type and
size. For example, when TPP was conjugated to cell penetrat-
ing peptides; these did not localize in mitochondria (46).
Furthermore, the use of TPP as a carrier of molecules to
mitochondria is not always predictable. Several recent reports
have shown that when TPP is conjugated to thiophene
fluorophore (47) or to a cyclometaleted Pt(II) complex (48),
these conjugates are found mainly in the cytoplasm and
nucleoli of cells, respectively.

We have recently reported (49) on the use of multiple
TPPs as a means of internalizing a hydrophilic nona-
peptide to mitochondria of intact (HeLa) cells. Increasing
the number of TPPs (covalently attached to ε-amine of L-
Lys) was shown to improve cellular uptake of this model
peptide, which was found mostly in the mitochondria.

To further expand the potential of this strategy, we decided
to explore the delivery of a well-studied anti-microbial
peptide, namely, a 14-mer all-D amino acid peptide of the
following sequence: d-KLAKLAKKLAKLAK (KLA). This
peptide strongly interacts and disrupts negatively charged
membranes as commonly found in bacteria (50). In addition,
KLA has been shown to induce mitochondria-dependent
apoptosis by its interaction with the mitochondrial mem-
brane. However, KLA’s pro-apoptotic activity is limited by
its poor uptake into cells. Several strategies have been utilized
to increase KLA cellular uptake. This has been accomplished
by the addition of tumor-homing peptides (51–55) and cell
penetrating peptides (56,57) or by designing KLA mimics
with improved cellular uptake and, as a consequence, pro-
apoptotic activity in cancer cells (26).

In this paper, we report on the synthesis of KLA peptides
with 0–3 Lys-TPP moieties and their cellular uptake and
cytotoxicity to cancer cells. We believe that the advantage
of this strategy in comparison to others reported thus far
relies on its simplicity and versatility (i.e. adding modified
L-Lysines onto any given peptide) and to the possibility for
optimizing mitochondrial uptake as a function of the
number of TPP moieties added.

MATERIALS AND METHODS

Solvents and Reagents

Dry solvents (dichloromethane (DCM), tetrahydrofuran
(THF), and N,N-dimethylformamide (DMF), over molecu-
lar sieves) were purchased from Acros and used as received.
All Fmoc amino acids and coupling reagents, including N-
[(1H-benzotriazol-1-yl)(dimethylamino)methylene]N-meth-
ylmethanaminium hexafluorophosphate N-oxide (HBTU),
N-hydroxybenzotriazole (HOBT) and benzotriazol-1-yl-
oxytripyrrolidinophosphonium hexafluorophosphate
(PyBOP), were purchased from GL Biochem (Shanghai).
4-Carboxybutyltriphenylphosphonium bromide, 6-
aminohexanoic acid, fluorescein isothiocyanate (FITC),
Allyl bromide, Pd(PPh3)4, and phenylsilane were purchased
from Acros. Propidium iodide (PI) and MTT reagent were
purchased from Sigma-Aldrich. DiOC was purchased from
Molecular Probes (Eugene, OR).

KLA Lys-TPP Synthesis

TPP-modified peptides were synthesized on a solid support
using commercially available Rink Amide (MBHA) Resin
(0.5 mmol/g, GL Biochem). Peptides were synthesized on a
0.2 mmol scale.

Coupling reactions were performed using 4 equiv. of
Fmoc protected amino acid, 4 equiv. of HBTU, 4 equiv. of
HOBT and 8 equiv. of DIEA in DMF for 1 h. The
coupling reaction was monitored by the Kaiser test.
Deprotection of the Fmoc group was achieved using 20%
piperidine in DMF (v/v) for 5 min, twice. Efficiency was
calculated according to UV absorption at 300 nm of the
cleaved Fmoc group (ε300=7,800 cm−1 M−1).

The Ahx (6-aminohexanoic acid) linker was protected
with Fmoc as previously described (58) and coupled by the
same method as described above.

Trityl (trt) group on 1, 2, or 3 ε-amines of L-lysine
(for 1–3 L-lysine amino acids, respectively) was depro-
tected using 5% TFA in DCM for 10 min, and this
procedure was repeated 2 additional times. Coupling of
the TPP-acid (4-Carboxybutyltriphenylphosphonium
bromide) on the free ε-amines (of 1, 2, or 3 L-lysines)
was performed in the same way as described for Fmoc-
protected amino acids. After the completion of solid
phase synthesis, peptides were cleaved and deprotected
in a solution of 88:5:5:2 TFA/water/phenol/triethylsi-
lane for 1 h, then precipitated with diethyl ether and
spun-down by centrifugation. Peptides were subse-
quently purified by RP HPLC (Shimadzu LC 2010C,
flow rate=4 mL/min) on a C18 reverse phase column
(Phenomenex, Jupiter 300A), using acetonitrile and
0.1% TFA in water as eluents (specific gradients are

Multiple TPPs for Mitochondrial Drug Delivery 2781



detailed in supporting information). KLA-TPP conju-
gates were monitored at 260 nm. The major peaks
were collected, lyophilized and identified by ESI-MS
(TSQ Quantum Access MAX, Thermo Scientific)
(Figures S1–S11). Purified peptides (KLA with 0–3 Lys-
(TPP) at either N or C-termini) were re-injected in an
analytical RP-HPLC column (Figures S12-S14). Yields
for all peptides were estimated according to crude
HPLC chromatograms and are indicated in supporting
information.

FITC Labeling

Fmoc-Ahx was introduced on N-terminus of all KLA
peptides (KLA with 0–3 Lys-(TPP)) followed by Fmoc
deprotection (20% v/v piperidine, 2×5′) and addition of
2 equiv. FITC and 4 equiv. DIEA in 1 ml DMF for
48 h. After peptide cleavage, resulting FITC-labeled
KLA peptides were purified by RP HPLC (see Supple-
mentary Material) by the same conditions and monitored
at 490 nm (FITC absorption). The major peak was
collected and lyophilized.

Synthesis of Fmoc-L-Lys-(TPP)-OH

The C-terminus of Fmoc-L-Lys-(Boc)-OH (1 mmol, 0.47 g)
was protected with an allyl group as previously described
(59). The Boc group at ε-amine was deprotected using a 2-
ml solution of 50% TFA in DCM stirred for 1 h at RT.
The solvent was evaporated, followed by coevaporation of
residual TFA using DCM and cyclohexane as azeotrope.
The resulting oily product was used immediately without
further purification.

Synthesis of Fmoc-L-Lys-(TPP)-(OAll)

A mixture of 0.44 g (1 mmol) TPP and 520 mg (2 mmol)
PyBOP was dissolved in 2 ml anhydrous DCM and 0.1 ml
DMF. Next, 0.7 ml (3 mmol) DIEA was added (pH: 9–10),
and the resulting solution was added to the Fmoc-L-Lys-
(OAll) (0.4 g, 1 mmol) and stirred for 2 h at RT.

The organic solvent was extracted with brine (5 ml×2),
5% aqueous acetic acid solution (5 ml×2) and water
(5 ml×2). The organic layer was collected and dried over
MgSO4, and the solvent was evaporated. The resulting oily
product was purified by silica gel column chromatography
with 0–10% MeOH/CHCl3 as eluents. The compound
was identified by 1H NMR (Varian 500 MHz) and ESI-
MS. Yield: 80%. ESI-MS: m/z: 753.6 calcd: 753.9

1H NMR (CDCl3): 7.8-7.6 (2xd, 19H TPP aromatic,
Fmoc aromatic), 7.4-7.3 (2xm, 4H, Fmoc aromatic), 6.43 (s,
1H, ε-amide of Lys), 5.9 (m, 1H, CH allyl), 5.72 (s, 1H, α-
amide of Lys), 5.32-5.21 (dd, 2H, O-CH2-CH-CH2), 4.62-

4.61 (d, 2H, CH2 allyl), 4.3-4.2 (m, 3H, CH2 Fmoc, CH- α
Lys), 4.16 (t, 1H, CH Fmoc), 3.2-3.0 (2xt, 4H, α-CH2 TPP,
δ-CH2 TPP), 2.27 (t, 2H, ε-CH2 Lys), 1.86 (m, 2H, δ-CH2

Lys), 1.64 (m, 2H, β-CH2 Lys), 1.63 (m, 2H, γ-CH2 TPP),
1.47-1.46 (m, 2H, β-CH2 TPP), 1.32 (m, 2H, γ-CH2 Lys).

13C NMR (CDCl3): 172.69, 172.13, 156.1 (3C, carbox-
yl), 143.86, 143.75, 141.1 (3C, quat. aromatic), 135.19 (3C,
aromatic TPP), 133.2 (6C, aromatic TPP), 131.58 (1C,
COO-CH2-CH-CH2), 130.55 (6C, aromatic TPP), 127.62
(2C, aromatic Fmoc), 127.07 (2C, aromatic Fmoc), 125.24
(2C, aromatic Fmoc), 119.8 (2C, aromatic Fmoc), 118.68–
117.24 (1C, COO-CH2-CH-CH2), 66.69 (1C, C-α Lys),
65.77 (1C, COO-CH2-CH-CH2), 54.0 (1C, CH2-Fmoc),
47.04 (1C, CH-Fmoc), 38.57 (1C, C-α TPP), 34.51 (1C, ε-
CH2 Lys), 31.35 (1C, C-ß Lys), 28.72 (1C, C-ß TPP), 26.07
(1C, δ-CH2 Lys), 22.32 (1C, γ-CH2 Lys), 21.87 (1C, δ-CH2

TPP), 21.45 (1C, γ-CH2 TPP).
31P NMR (CDCl3): 23.5 (s)

Allyl Deprotection: (Fmoc-L-Lys-(TPP)-OH)

For the reaction, a 25-ml schlenk flask was equipped
with magnet stirrer and purged with argon. In a glove
box, 800 mg (1 mmol) of Fmoc-L-Lys-(TPP)-(OAll) was
dissolved in 4 ml of dry THF. Fifty mg (0.05 mmol) of
Pd(PPh3)4 and 280 μl (2 mmol) phenylsilane were added
to the reaction flask. The reaction mixture was stirred at
RT under argon atmosphere for 3 h. The reaction
mixture was diluted with 20 ml DCM and washed with
sat. aqueous NH4Cl solution (3X20ml). The organic layer
was separated, dried over MgSO4, filtered and concen-
trated in vacuo.

Fmoc-L-Lys-(TPP)-OH was purified by silica gel column
chromatography with 0–20% MeOH/CHCl3 as eluents.
The pure compound was precipitated from DCM with cold
diethyl ether and spun-down by centrifugation, resulting in
dry light brown powder. Yield: 95%. The compound was
identified by 1H NMR (Varian 300 MHz) and ESI-MS.
ESI-MS: m/z: 713.6 calcd: 713.31

1H NMR (CD3OD): 7.8-7.5 (2xd, 19H TPP aromatic,
Fmoc aromatic), 7.3-7.1 (dt, 4H, Fmoc aromatic), 4.3-4.1
(m, 3H, CH2 Fmoc, CH- α Lys), 3.9 (t, 1H, CH Fmoc), 3.2
(m, 2H, α-CH2 TPP), 3.0 (t, 2H, δ-CH2 TPP), 2.1 (t, 2H,
ε-CH2 Lys), 1.76-1.2 (m, 10H, δ-CH2 Lys, 2H, β-CH2
Lys, γ-CH2 TPP, β-CH2 TPP, γ-CH2 Lys).

Cell Culture

Cell culture of HeLa cells was maintained in DMEM
medium containing 10% fetal calf serum, 1% penicillin-
streptomycin, and 1% glutamate and incubated in a
humidified atmosphere incubator with 5% CO2 at 37°C.
Cells were routinely subcultured every 2–3 days.
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Determination of Cytotoxicity

HeLa cells, maintained in DMEM medium containing 10%
fetal calf serum, were plated on a 96-well plate (1.2×104

cells/well in 100 μL) and incubated 24 h in a humidified
atmosphere incubator with 5% CO2 at 37°C. The various
peptides dissolved in 2% DMSO in PBS were added at
different concentration (10–50 μM) and incubated for 3 h
in 5% CO2 at 37°C. Final DMSO concentration was less
than 0.2% (v/v).

Next, 20 μl of MTT solution was added to each well and
incubated for 2 h in 5% CO2 at 37°C. The medium was
discarded, and 200 μl of DMSO was added. Cytotoxicity
was determined by measuring the absorbance at 500 nm on
a plate reader (Synergy HT, BIO-TEC). All measurements
were performed as triplicates.

Confocal Fluoresence Microscopy

HeLa cells were cultured on μ-slide 8-well plates (Ibidi)
2 days prior to the experiment at 6×104 cells/ml. FITC-
labeled peptides (2 μM in PBS buffer with 1% EtOH) were
incubated with cells for 120 min. After extensive washing with
PBS (X3), cells were visualized by confocal microscopy. For
colocalization studies, cells were incubated with 15 μMKLA-
3-FITC (KLA with 3 Lys-(TPP) and FITC) for 75 min.
Mitotracker M7512 (a mitochondrial marker supplied by
Invitrogen) at a final concentration of 100 nM was added for
another 15 min, and cells were washed three times with PBS.
Images were taken with a laser confocal scanning microscope
(FluoVIEW FV10i, Olympus). The excitation wavelength for
visualization of the FITC- labeled peptide was 448 nm, and
emission spectra were collected between 505 and 515 nm.
The excitation wavelength for visualization of Mitotracker
M7512 was 579 nm, and emission spectra were collected with
a long-pass 599 nm filter.

Flow Cytometry with PI and Annexin V

HeLa cells/well (5×105) were plated in a 6-well plate (in
5 ml DMED). The plate was incubated overnight at 37°C
in 5% CO2. Twenty μM, 30 μM and 40 μM of 3-KLA
were added to cells for 3 h, and the plate was maintained at
37°C in 5% CO2. Cells were harvested, and 2×105 cells
were stained with Annexin V and propidium iodide
according to the manufacturer’s specifications (MEBCYTO
apoptosis kit, MBL). Cells were analyzed by FACS (scan-
flow cytometer, LSR II).

Flow Cytometry with DiOC, A Mitochondrial Marker

HeLa cells/well (5×105) were plated in a 6-well plate (5 ml
DMED) and incubated overnight at 37ºc in 5% CO2.

30 μM of 3-KLA was added for 1 h, 2 h and 3 h. The cells
were harvested, and 4×105 were then incubated with
0.5 nM DiOC for 15 min. Cells were then analyzed by
FACS (LSR II).

RESULTS

Synthesis of KLA Peptides with Lys-TPP at Either N-
or C-Termini

Two synthetic routes were utilized for the conjugation of
Lys-TPP monomers at either C- or N-termini of the
KLA peptide, respectively. For the introduction of Lys-
TPP on the C- terminus, the following synthetic route
was used (Scheme 1). Here, the resin was initially loaded
with 1, 2 or 3 L-lysines, protected with an acid-labile trityl
group on the ε-amine. Next, these trityl groups were
removed with a low concentration of TFA (5%), con-
ditions that retain the peptide on the solid support.
Subsequently, the free ε-amines (1–3, corresponding to
1–3 L-Lys) were coupled to TPP-COOH by using
standard peptide coupling chemistry.

At this stage, after the removal of the Fmoc from the N-
terminal amine, a linker was introduced (Fmoc-Ahx),
followed by the KLA sequence. As a control peptide,
Fmoc-Ahx was introduced onto the resin followed by KLA
peptide (denoted as 0-KLA). Final deprotection followed by
HPLC purification afforded all four peptides (0, 1, 2, and
3-KLA, where 0–3 to the left of KLA refers to the number
of Lys-TPPs and to the attachment of Lys-TPP to the C-
terminus of KLA). The Ahx linker was introduced to
minimize steric hindrance between the peptide and the
TPP moieties.

In a different synthetic approach, we decided to
synthesize an L-Lysine monomer that includes the
TPP moiety on the ε-amine. This should allow its
introduction at either end of peptide by standard
Fmoc-based peptide chemistry without the need of
trityl deprotection, which might result in some tBOC
deprotection, as these two protecting groups are not
completely orthogonal.

Scheme 2 presents the synthetic approach for introduc-
ing the TPP moiety onto the ε-amine of L-Lysine. The
Alloc protecting group on the carboxylic acid was chosen,
since it may be cleanly removed with Pd(PPh3)4 in the
presence of Fmoc.

This monomer (Fmoc-L-Lys(TPP)-OH) was then used to
prepare the KLA peptide with 0–3 Lys-TPP’s at the N-
terminus (Scheme 3). This was done in a straightforward
manner by standard Fmoc chemistry on the solid support
by introducing the KLA peptide followed by the linker
(Ahx) and the monomer (added 1–3 times).
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In order to follow cellular uptake of KLA peptides in
cells, FITC was introduced at the N-terminus of the
KLA series (KLA 0–3) by adding Fmoc-Ahx followed by
FITC. The Ahx spacer is critical at this point, since
direct labeling of L-Lys by FITC may result in peptide
degradation after cleavage from resin (60). Finally, all
peptides were cleaved from resin and HPLC purified.
Table 1 provides the calculated and expected mass for all
KLA peptides. HPLC chromatograms and ESI-MS
analysis of purified peptides are provided in Supplemen-
tary Material (Figures S1-S14).

Cellular Uptake of TPP-Modified KLA Peptides

FITC-labeled KLA peptides with 0–3 Lys-TPP moieties
(KLA-n-FITC, where n=0-3) were examined for their
cellular uptake into intact live HeLa cells. Figure 1a shows

the uptake of all KLA peptides at a fixed concentration of
2 μM after adding the FITC-labeled peptides to HeLa cells
followed by a short incubation of 120 min. As shown in
Fig. 1a, only the KLA peptide with 3 Lys-TPP moieties
(KLA-3-FITC) has an appreciable cellular uptake (green
fluorescence), whereas all other peptides seem to be
excluded from cells.

Next, we were interested in determining whether KLA-
3-FITC localizes to the mitochondria. As the FITC signal
was relatively weak at 2 μM, we decided to incubate HeLa
cells with 15 μM KLA-3-FITC (for 75 min). After this
period, Mitotracker was added to cells (for an additional
15 min), and these were imaged by confocal microscopy
(Fig. 1b). The image shows a substantial co-localization of
KLA-3-FITC and Mitotracker, an observation that is
consistent with preferential mitochondrial localization of
KLA-3-FITC to mitochondria of intact cells.
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Scheme 1 Solid phase synthesis of n-KLA peptides (where n=0, 1, 2 and 3 Lys(TPP)). Reagents and conditions: (a) Fmoc-amino acid, HATU, HOBT, DIEA;
(b) 20% piperidine in DMF; (c) 5% TFA in DCM; (d) 4-Carboxybutyltriphenylphosphonium bromide, HATU, HOBT, DIEA; (e) 88% TFA, 2% triethylsilane,
5% H2O, 5% phenol, 1 h at RT.
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Scheme 2 Synthesis of Lys-TPP monomer. Reagents and conditions: (a) Allyl bromide, NaHCO3; (b) 50% TFA in DCM for 1 h at RT; (c) 4-
Carboxybutyltriphenylphosphonium bromide, HATU, HOBT, DIEA; (d) Pd(Ph3)4, phenylsilane.
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Cytotoxicity of TPP-Modified KLA Peptides

Cell viability of HeLa cells treated with KLA peptides was
determined by the MTT assay. Successful internalization of
the KLA peptides into cells is expected to translate into
cytotoxicity by an apoptotic mechanism that is mitochon-
drial dependant (51). According to confocal images shown
in Fig. 1, it is expected that the KLA peptides with three

TPP moieties would be most active as a result of improved
cellular uptake. Indeed, this is the case as shown in Fig. 2.

A 60% mortality of HeLa cells was found after 3 h
incubation with 30 μM of 3-KLA at 37°C. At this
concentration, all other peptides were by far less toxic. A
similar behavior was found for the KLA peptides with 0–3
Lys-TPPs at the N-terminus, namely, peptides KLA-0,
KLA-1 and KLA-2 exerted minimal cytotoxicity, whereas

d-KLAKLAKKLAKLAK-Ahx-NHFmoc

(b), (c)

d-KLAKLAKKLAKLAK-Ahx-NH

O
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n

O
N
H
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P

n
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n = 1, 2, 3

d-KLAKLAKKLAKLAK-Ahx-NH

d-KLAKLAKKLAKLAK-Ahx-NH

(b), (d)

(a), (b)

(b), (e)
(b), (f), (d)

KLA-n

FITC-KLA-n

(b), (d)

KLA-0 (b), (f), (d)

FITC-KLA-0

n = 1, 2, 3

Scheme 3 Solid phase synthesis of KLA-n peptides (where n=0, 1, 2 and 3 Lys(TPP) with and without FITC. Reagents and conditions: (a) Fmoc-amino
acid, HATU, HOBT, DIEA; (b) 20% piperidine in DMF; (c) Fmoc-L-Lys(TPP)-OH, HATU, HOBT, DIEA; (d) 88% TFA, 2% triethylsilane, 5% H2O, 5%
phenol, 1 h at RT; (e) Fmoc-Ahx, HATU, HOBT, DIEA; (f) FITC, DIEA, 48 h at RT.

Peptide Abbreviation MW (Calc.) MW (found)

amide-d(KLAKLAK)2-Ahx-Lys(TPP) KLA-1 2,108.40 2,108.62

amide -d(KLAKLAK)2-Ahx-2Lys(TPP) KLA-2 2,581.64 2,581.20

amide -d(KLAKLAK)2-Ahx-3Lys(TPP) KLA-3 3,054.87 3,054.50

amide -d(KLAKLAK)2 -Ahx-FITC KLA-0-FITC 2,024.20 2,025.30

amide -d(KLAKLAK)2-Ahx-Lys(TPP)-FITC KLA-1-FITC 2,610.52 2,611.76

amide -d(KLAKLAK)2-Ahx-2Lys(TPP)-FITC KLA-2-FITC 3,083.76 3,083.10

amide -d(KLAKLAK)2-Ahx-3Lys(TPP)-FITC KLA-3-FITC 3,556.99 3,556.04

amide -Ahx-d(KLAKLAK)2 0-KLA 1,635.17 1,635.20

amide -Lys(TPP)-Ahx-d(KLAKLAK)2 1-KLA 2,108.40 2,109.90

amide -2Lys(TPP)-Ahx-d(KLAKLAK)2 2-KLA 2,581.64 2,580.50

amide -3Lys(TPP)-Ahx-d(KLAKLAK)2 3-KLA 3,054.87 3,052.14

Table 1 Mass Analysis of KLA
Peptides
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KLA-3 resulted in killing 50% HeLa cells at 30 μM (data
not shown).

The cytotoxic effect of 3-KLA peptide was further
investigated by looking into changes in the cell’s membrane
integrity, an event that is indicative to early and late
apoptotic events. HeLa cells were incubated 3 h at several

concentrations of the 3-KLA peptide and subsequently
analyzed by FACS.

Figure 3 presents the data obtained from both Annexin
V and PI fluorescence by FACS. At 30 μM of 3-KLA, most
cells are stained by PI (over 70%), and a smaller population
is positively stained only by Annexin V (ca. 17%),
corresponding to cells at an early apoptotic stage. Interest-
ingly, at 20 μM 3-KLA, most cells are intact with only 18%
of the population in early and late apoptotic states.

To further elucidate the mechanism of apoptotic death by
3-KLA, we examined apoptosis inHeLa cells by looking at the
fluorescence of a lipophilic dye (DiOC, 3,3′-dihexyloxacarbo-
cyanine) that binds to the mitochondrial membrane and
fluoresces according to the given mitochondrial potential (61).
Hence, cells that are undergoing mitochondrial-dependent
apoptosis lose their mitochondrial membrane potential, an
event that may be followed by a shift in fluorescence of
DiOC when analyzed by FACS.

This is indeed the case when HeLa cells were treated
with 30 μM of KLA-3 and analyzed by FACS (Fig. 4).
DiOC florescence was monitored at different time points
(after 1–3 h). A gradual increase in the population of cells
that show a weaker fluorescence of DiOC was observed,
which is consistent with a time-dependent cellular apoptosis
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Fig. 1 (a) Cellular uptake in HeLa cells of 2 μM FITC-labeled KLA-0-3 peptides. (b) Cellular uptake in HeLa cells of 15 μM FITC-labeled KLA-3 (KLA-3-
FITC). Mitotracker (100 nM) was added to cells in order to visualize co-localization of KLA-3 with the mitochondrial dye.
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peptides for 3 h at RTand then analyzed by the MTTassay for cell viability.
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that is mitochondria-dependent. Two major populations
were also observed by FACS according to cell size and
granulation. These two populations represent apoptotic
and viable cells, respectively. (See Supplementary Material
for crude FACS data).

Thus, a clear correlation between these two populations
and the population of cells that respond to DiOC staining
(DiOC-low, Fig. 4) suggests that the main drive into
apoptosis results from disruption of the mitochondrial
membrane.

DISCUSSION

This report has now expanded the possibility of utilizing
multiple TPPs as a means of targeting cell-impermeable

peptides (and possibly other molecules) to the mitochondria
of intact cells. We have demonstrated a relatively simple
synthetic procedure for synthesizing the Fmoc-L-Lys(TPP)-
OH monomer (Scheme 2). Using this method, we were able
to isolate the desired peptides (e.g. KLA-3, 52% yield) at
satisfactory yields (see Supplementary Material). This
monomer allows an efficient synthesis of various peptide-
TPP conjugates by being compatible with Fmoc-based solid
phase synthesis. During the synthesis of the N-terminal
TPP-conjugates using Fmoc-Lys(Trt)-OH, we have found
that the trityl group is not completely compatible with the
tBoc-group and obtained undesired multiple TPP conjuga-
tions on the KLA sequence. This obstacle was surmounted
by utilizing the Fmoc-L-Lys-(TPP)-OH monomer.

Besides establishing the biological proof of concept of our
approach, we have also gained some insight on the capacity of
multiple TPP to internalize peptides. In our previous study, we
have shown that cellular uptake of a hydrophilic nona-peptide
(HA peptide = YPYDVPDYA) into mitochondria of HeLa
cells is gradually improved with increasing the number of
lipophilic cations (TPP) conjugated to this peptide (49). At a
concentration as low as 10 nM, the fully modified HA
peptide modified with three Lys(TPP) moieties is already
found in HeLa cells as corroborated by confocal microscopy
(49). However, the KLA peptide bearing 3 TPP moieties did
not show any significant uptake at the nanomolar range (data
not shown). Only at a concentration of 2 μM, an appreciable
cellular uptake could be detected (Fig. 1a). This difference in
cellular internalization between KLA and HA peptides could
originate in different hydrophilicities and overall size of these
peptides and/or by the inherent propensity of KLA to form a
helical fold (26,50). It still remains to be explored the
potential of multiple TPPs to internalize larger peptides and
to determine the optimal number of TPPs that would result
in the most effective cellular uptake of a given cargo.
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In our present experiments, 3-KLA demonstrated pro-
apoptotic activity when incubated with HeLa cells with an IC50

value of ca. 25 μM. The cytotoxic effect is observed already
after a 1-h incubation of KLA (30 μM, Fig. 4). According to
our results, the presence of 3 TPP moieties is crucial for the
peptide’s cellular uptake and consequently its biological activity.
Interestingly, the location of TPP molecules on either N- or C-
terminus does not change its cytotoxic ability. Thus, it is likely
that adding the Ahx linker to separate the peptide from the
Lys-TPP units at either N- or C-termini preserves the biological
activity of KLA. We believe that such an approach would also
be useful to other biologically active peptides or molecules.

CONCLUSIONS

In this paper, we have explored the potential use of multiple
TPP moieties for the internalization of a pro-apoptotic
peptide (KLA) into intact cancer cells. We have found
significant biological activity only when three TPPs are
tethered to either end of this peptide. We have also shown
that the well-established activity of this peptide, namely,
mitochondrial-dependent apoptosis, is well preserved.

It is now our intention to study the potential therapeutic
application of this approach to target other biologically
active molecules (preferably to mitochondria) and to
determine the capacity of this strategy in terms of the
cargo’s characteristics such as size and charge.
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